
Development of Real-Time Software

4 CROSSTALK The Journal of Defense Software Engineering November 2003

An Introduction to Real-Time Programming

Real-time programming requires that you consider things that are hidden from high-level application programmers. Some of
those considerations are choice of hardware, operating system, and programming language. Although these same choices have
to be made by every programmer, the real-time programmer makes the choice from a different set of options.

Real-time programmers must have a
intimate relationship with computer

hardware, and if there is one, the operat-
ing system. Thus, another name for real-
time programming is low-level program-
ming, and at this low level, the silicon
world looks a lot different from high-
level application programming. This arti-
cle will familiarize the reader with some
of the terms and considerations of real-
time programming like the selection of
hardware, operating systems, and high-
level language selection.

Definitions of real time vary [1].
Savitzky [2] provides two definitions, but
here, a real-time system is defined as one
in which the timing of the result is as
important as the logical correctness.
These systems can be classified as hard or
soft. In a hard real-time system, critical
computations have deadlines, and if the
deadlines are not met, the system has
failed. In a soft real-time system, missing
a deadline may not be a failure [3]. Soft
deadlines are based on average perform-
ance. To be considered hard, the compu-
tation times must be deterministic. A sys-
tem is deterministic if it has the ability to
respond to an event in a predictable peri-
od of time [4].

Another system classification is
embedded or not embedded. The most
common definition of an embedded sys-
tem is one that is part of a larger system.
The author prefers to define an embed-
ded system as one that does not interact
with a human. Inputs come from a sen-
sor and outputs go to a controller, as
opposed to the familiar keyboard input
and video display output. Most real-time
systems are embedded and consist of
machine communicating with machine.

Some real-time systems are synchro-
nous, but most are asynchronous. A syn-
chronous system has a clock that keeps
track of time and provides timing signals.
An asynchronous system can accept
inputs from the outside world at any
time; there is no common timing signal
to warn or to synchronize input. The
terms synchronous and asynchronous

are also applied to message passing,
where they have different meanings. In
message passing, synchronous means the
sender waits for the message to be
received; asynchronous means the sender
can proceed immediately after sending a
message [5].

Many real-time systems must do
simultaneous tasks, and making these
tasks coordinate available resources is
one aspect of real-time programming.
Available resources might be physical

such as access to hard storage, a printer,
an input/output (I/O) port, or they
might be logical such as a non-shareable
code segment. The following are the
types of issues that real-time program-
mers handle: “How long will each task
take to complete?” “How soon can
another task be scheduled and start to
run?” “Which task is most important?”
“What happens if one task takes too
long?” “Do the tasks have to communi-
cate, and if so, how?”

In designing real-time systems, choic-
es have to be made about hardware as
well as software. Software decisions
include operating system considerations
as well as language and algorithm choices.

Hardware
Inexpensive hardware choices for con-
trolling a real-time project include micro-
controllers like the Motorola 68HC11,

Intel 8051, or PIC 16F84. See [6] for an
overview of more choices. A personal
computer system could be used if the
operating system allows access to periph-
eral ports. The basic requirements are
input, some processing capability, and an
output.

A microcontroller is optimized for
data acquisition and control purposes. It
contains a central processing unit (CPU),
random access memory, read only mem-
ory, serial and parallel I/O ports, an ana-
log to digital converter, and a timer cir-
cuit. All of these systems communicate
via a data bus. Microcontroller folks do
not refer to the CPU as a microproces-
sor, just as the CPU [7]. However, a
microcontroller can be defined as a
microprocessor with special hardware
support [8].

There are hundreds of microproces-
sors classified as either eight, 16, or 32
bit. The Lego Mindstorms robot uses a
Hitachi eight-bit H8/3292 microproces-
sor [9]. Another classification is reduced
instruction set computing (RISC) or
complex instruction set computing
(CISC). RISC processors use simple
instruction sets, few memory references,
lots of registers, and pipelined instruc-
tion sets, but that does not make them
better for all tasks [10].

Real-time processors have one or
more interrupt request lines (IRQ) to
connect to peripherals. When a peripher-
al wants CPU attention, it asserts the
IRQ. This is considered an asynchronous
event. If the CPU services the request,
the current task is preempted, the pro-
gram counter and other registers are
saved on the stack, and a jump is made to
the location of an interrupt service rou-
tine (ISR). The ISR is the software asso-
ciated with the device causing the inter-
rupt. When the ISR is finished, the state
of the processor is restored, and execu-
tion is continued. The program counter
and register states for a task are called the
context of the program.

Computer program execution is a
sequence of synchronous events con-

Dennis Ludwig
Aeronautical Systems Center

“Many real-time systems
must do simultaneous

tasks, and making these
tasks coordinate

available resources is
one aspect of real-time

programming.”

trolled by a program counter and a sys-
tem clock. A software error, like a divide
by zero, may cause an exception or sys-
tem trap. Traps are not the same as inter-
rupts, but they are usually handled the
same way. Interrupts and asynchronous
events are externally caused while traps
are considered synchronous even though
they are unexpected. Traps usually result
from software errors.

Some items to consider when choos-
ing hardware are the amount of random
access memory needed, whether floating
point assistance is required and provided,
and the granularity of the system time
base. The number of processors used is
another decision that will also affect the
software needed. In a multiprocessor sys-
tem, several CPUs operate simultaneous-
ly and share the processing workload.

One method that is used to distin-
guish microprocessors is the millions of
instructions per second (MIPS) perform-
ance (or Meaningless Indicator of
Performance for Salesmen, according to
[10]). One form of MIPS ratings, called
relative MIPS, measures how many
instructions a VAX 11/780 could have
executed in the same amount of time a
given computer can run a benchmark
program. Different computer architec-
tures and other factors make this rating
less useful, even misleading, but it is still
used [11].

Clock speed is also useless as a meas-
ure of performance because processors
vary in the number of clock cycles
required for memory access and other
instruction executions [12].

Besides a complicated choice of hard-
ware issues, the real-time programmer
has different software issues to consider.
Data structures, control structures, and
operating systems look different from a
low-level perspective.

Data Structures
Real-time programmers have to deal with
some data structures that are normally
hidden from high-level programmers.
The task control block is where the CPU
stores the state of the last run task so it
can be restored.

The semaphore, invented by Edsger
Dijkstra1, is used to coordinate processes
and shared resources. There are two
types of semaphores: binary and count-
ing. A binary semaphore is used to pro-
vide mutual exclusion. A counting sema-
phore is used when a resource can be
used by more than one task at a time [13].
The basic counting type is an integer vari-
able that is accessed only through two
basic operations, wait and signal; howev-

er, an initialize operation is also usually
provided. Modifications to the integer
value of the semaphore must be execut-
ed without interruption.

A macro is a label that replaces a
block of instructions that is used more
than once, but only coded once. It differs
from a subroutine in that the assembler
inserts the code where the call is made
rather than having a jump-to-it com-
mand. It works by text substitution and is
usually faster than a subroutine but takes
up more memory.

A pipe is a stream of data used to
connect tasks, or to provide task commu-
nication. A buffer, like a first-in-first-out
buffer, can implement it. This eliminates
the need to use a file to store temporary
results. A pipe self-regulates its flow so
that it uses less disk space than a tempo-
rary file [14].

A script is a file of characters used for
input or instructions to a program. The
programmer can use it to simulate an

interactive user or other I/O device. A
script file could be a list of commands
for a command interpreter such as a
batch file [15].

A communications port consists of a
queue to hold messages and two sema-
phores. One semaphore controls produc-
ers, or the process that generates mes-
sages, and the other controls consumers,
which are the processes that use the mes-
sages.

Control Structures
Two basic software control structures are
the polling loop and event-driven sys-
tems. In a polling loop, the program
examines each input in turn to see if an
event has occurred. The program struc-
ture is a loop, and the inputs to be exam-
ined are predetermined. If an event
occurs, the polling is stopped, some
action is taken, and the polling continues.
Controlling refrigerator temperature

could be done with a simple polling loop.
The temperature would be read as input
and the compressor turned on or off
based on the reading. If the temperature
is within controlled limits, no action is
taken.

There are three kinds of event-driven
systems: foreground/background, multi-
tasking, and multiprocessor [16]. In an
event-driven system, the program loops
(sometimes called a spin loop) until an
interrupt occurs, at which time the loop
stops and services the interrupt, and then
continues. Interrupt latency is the inter-
val of time measured from the instant an
interrupt is asserted until the correspon-
ding ISR begins to execute. Remember
that an interrupt request is a request. The
processor may have some critical pro-
cessing to finish before it responds and
services the request.

Context switching time is the time the
operating system takes to store the state
of the processor or the contents of the
registers before it begins to process
another task. Because the context switch-
ing time and interrupt latency may not be
constant times, making the system pre-
dictable can be a challenge for the real-
time programmer.

Microcontrollers come with a moni-
tor program that allows programmers to
develop and execute software. Do not
confuse this monitor with the screen
monitor. The word monitor is also used
for a shared data structure that contains a
semaphore [2]. A monitor for a micro-
controller is a program that combines a
debugger, some device drivers, and a
bootstrap loader program. If provided, it
is usually part of the read-only memory.
The bootstrap program initializes the sys-
tem by setting the registers to known
states, and then it calls in or loads the rest
of the required software routines. A
monitor may include an assembler, which
is a program that translates source code
into object code, and can also produce a
listing file.

A linker combines one or more object
code files to produce a hex file. Two stan-
dard formats for the hex file are Intel hex
and Motorola S record files. These are
American Standard Code for Infor-
mation Interchange (ASCII) files so they
can be transported through serial ports.
A loader converts the hex file into an exe-
cutable form called a binary file [17].

The foreground/background system
is basically a polling loop with interrupts
enabled. The loop runs in the back-
ground. Only critical processing is done
inside the interrupt.

Multitasking is a technique to allocate

November 2003 www.stsc.hill.af.mil 5

An Introduction to Real-Time Programming

“Remember that an
interrupt request is a
request.The processor
may have some critical

processing to finish
before it responds and
services the request.”

Development of Real-Time Software

6 CROSSTALK The Journal of Defense Software Engineering November 2003

CPU processing time among several
tasks. While an executing task is using the
physical processor resources, other tasks
have their resources stored in memory.
These resources include the program
counter, stack memory area, and stack
pointer. These systems are classified as
preemptive or nonpreemptive depending
on whether they can preempt an existing
task or not. In a preemptive system, each
task is given a time slice.

Multiprocessor systems have more
than one processor. For more informa-
tion on design considerations for multi-
processor systems, see [18]. Multitasking
and multiprocessor systems usually
require an operating system to provide
task synchronization and inter-task com-
munication.

Operating Systems
Some operating systems are dedicated to
a particular controller board. Some are
designed exclusively for real time but not
a specific board, and others are general-
purpose programs that have been
enhanced to provide real-time services.

Other names used for software rou-
tines that control processing are the
executive, monitor, task manager, or ker-
nel. These terms are sometimes used
interchangeably. A program that sits qui-
etly in the background until it is called to
perform its task is called a daemon.

Some operating systems are available
with the source code, but many are not.
If a bug appears in the code, and source
code is not available, then the program-
mer has to work closely with the vendor
to resolve the problem. A freeware real-
time multitasking kernel with source
code can be found at Embedded Systems
Programming <www.embedded.com>
or at <www. ucos-ii.com>.

Information on some real-time oper-
ating systems (RTOS) can be found at
<www.rtlinux.org>, <www.aero.polimi.
it/~rtai>, <www.qnx.com>, <www.
windriver.com>, or <http://seg.iit.nrc.
ca/projects/harmony>. Other operating
systems could be used (like MSDOS) for
very simple real-time tasks even though
they are not optimized for real time as
long they provide access to the system
I/O ports. Usually a RTOS must support
multithreading, provide timing features,
be predictable, and run with low over-
head.

Operating systems are complex pro-
grams that interface hardware with user
programs. Some modules that make up
an operating system are the scheduler,
dispatcher, context switch, memory
manager, inter-process communication

module, real-time clock manager, inter-
rupt manager, and file system manager.

The scheduler is sometimes called the
dispatcher [19]. The purpose of the
scheduler is to select a process from
among those ready to run, schedule time
for it on the CPU, and maintain a list of
ready processes.

The dispatcher dispatches jobs to the
CPU, using the list created by the sched-
uler. Most real-time operating systems
use a priority-based preemptive sched-
uler to keep the system in order. Priority-
based means that some type of priority
scheme will be used to determine how
the schedule is made. Preemptive means
that a task can be stopped, or another
task can be preempted. In a nonpre-

emptive system, a task must run to com-
pletion or until it suspends itself.

A task gives up processor control
when it terminates, when it voluntarily
suspends, when its time slice is up, or
when a higher priority task becomes
available and the scheduler preempts the
running task to let the higher priority one
run. Preemptive ability reduces priority
inversion, which is having a higher prior-
ity task wait on a lower priority task.
Priority inversion cannot be prevented,
but it can be reduced. The scheduler also
preempts a task when its time slice is up
in order to keep one process from com-
pletely controlling the CPU and blocking
other tasks from running. The scheduler
is the part of the operating system that
decides who gets to do what and when.

If several tasks are allowed to have
the same priority, they are executed in
the order they become ready; this is
called round-robin scheduling. In a static

priority system, the priorities do not
change during run time. Changing the
priority of a task during run time is sup-
ported by some systems, and the algo-
rithms for assigning dynamic priorities
are different from the ones used for stat-
ic priorities. One dynamic scheduling
policy is the earliest-deadline-first algo-
rithm. A static priority policy can be ana-
lyzed so the system reaction is more pre-
dictable.

If higher priority tasks keep a lower
priority task from running, the condition
is called starvation. The number of tasks
should be kept to a minimum and careful
consideration given to priority choices.
The selection should be made based on
what the task does during run time.

In a deadlock, two tasks are waiting
for resources that are held by each other.
Neither task has all the resources needed
to complete, and will not be able to get
them all because the other task is holding
resources and waiting to get more. Tasks
should be required to get all needed
resources before proceeding, and they
must get the resources in the same order.

For an application that will be record-
ing, reporting, and storing data simulta-
neously, each task is a separate, sched-
uled instruction stream. In some sys-
tems, the instruction streams are called
processes, in other systems they are
called tasks, and sometimes they are
called threads. Since some tasks are more
important than others are, some sort of
prioritization is employed. If a piece of
code needs to be executed without inter-
ruptions or being preempted, a data
structure called a semaphore is used.

Real-Time Languages
A lot of real-time programming is done
in assembly language. C is popular, as
well as C++ and Forth. Although Forth
is an interpreted language, it is efficient
because of its stack-oriented design. Java
is also being used, or rather a form of
Java is being used.

A language with automatic garbage
collection is not a good choice for real
time because it hinders determinism, but
there is a working group making a real-
time version of Java, the Real-Time
Specification for Java.

Ada was designed for real time and is
the most powerful of those mentioned.
Annex D of the Ada language specifica-
tion is devoted to real-time issues, and
any compiler that implements annex D
will also implement annex C, which is the
Systems Programming Annex. The
strong type checking can be turned off to
increase speed by using a pragma, while

“Predictability is
extremely important in
real-time programming,

and to get it, you need to
keep track of time.

Response time is the
time it takes the

computer to recognize
and respond to an
external event.”

November 2003 www.stsc.hill.af.mil 7

representation clauses allow mapping to
the hardware. In Ada, a pragma is a direc-
tive to the compiler.

The Time Element
Predictability is extremely important in
real-time programming, and to get it, you
need to keep track of time. Response time
is the time it takes the computer to recog-
nize and respond to an external event.
Survival time is the time during which the
data will be valid. Throughput is the num-
ber of events that the system can handle
in a given time period [20].

As an example, consider a red traffic
light with a queue of cars waiting to go
through. When the light turns green, it
takes time for the first driver to compre-
hend that it is time to go. There is some
reaction time for them to move the foot
from the brake to the accelerator. The sec-
ond car undergoes the same time delay as
the driver recognizes that the first car is
moving, and he or she can now begin to
accelerate. Survival time is the time the
light remains green. Throughput is the
number of cars that get to go through the
light.

Time is a factor in reading, storing, or
recording data. For the system to store
data after it is sensed, a disk may be used.
When the read/write heads move to the
proper cylinder or track, there is some
seek time involved (about 25 milliseconds)
and some settling time. The electro-
mechanical movement has to settle before
the read begins. The proper head has to be
activated. Rotational delay is the time
spent waiting for the proper record to
rotate under the head. The data transfer
rate is the speed at which the data is trans-
ferred from the head to the storage medi-
um and is determined by the rotational
speed and density of the recording medi-
um. Because these times will be different
for each operation, the average times must
be calculated and the worst-case times
known for proper predictability to be
made.

Other time factors considered by a
real-time programmer are bus latency and
context switching time. Bus latency is the
delay incurred when the CPU needs to
acquire the bus to transfer a command or
data. Switching the CPU from executing
one process to executing another requires
saving the state, or context, of the old
process and loading the context of the
new process. The task that does this is
called a context switch, and it takes time
to execute. First, a process has to be
selected from those that are ready. This is
performed by the scheduler part of the
operating system, and the selection

process has more time to be considered
and accounted.

To conceptualize how processes have
to work together but still compete for
resources, most courses on real time use
Edsger Dijkstra’s dining philosophers
problem [21]. There are a group of
philosophers who spend their time either
thinking or eating. They sit at a round
table with a bowl of rice in the middle and
one chopstick on either side of them. In
order to eat, they have to acquire the
chopstick on the left and on the right of
them, and return the sticks when finished.
This is a classic synchronization problem
used to demonstrate allocating resources
between competing processes without
getting into a deadlock or starvation
mode. An Ada implementation for a solu-
tion can be found in [22] Chapter 11.

Tools
Some software tools used by real-time
programmers include simulators, debug-
gers, and analysis algorithms. An instruc-
tion level simulator now supports most
processors. The debugger is usually pro-
vided as part of the monitor package,
and the simulator will probably have a
debugger associated with it. A calculator
that has hex, octal, and binary capability
is very useful.

Another tool is a dump routine (the
Digital Command Language dump, not
the Linux dump) that allows one to
dump the binary contents of a file. On
Windows systems, this can be done with
the debug command. To find out more
about it, open a command prompt win-
dow and enter: C:>debug/?. For Linux, a
hex editor like KHexEdit can be used.

When comparing binary files or port-
ing from one computer to another, con-
sideration has to be given to the way
bytes are ordered within a word. In Big
Endian addressing, the address of a data
element is the address of the most sig-
nificant byte, while in Little Endian

addressing, the address of the data ele-
ment is the least significant byte [23].
Everyone agrees that there are eight bits
to a byte and four bits to a nibble, but the
definition of a word seems to vary. A
word is a grouping of bits moved and
processed as a unit in computing struc-
ture [24]. With that definition, a 16-bit
machine has a 16-bit word, a 32-bit
machine has a 32-bit word, and on an
eight-bit machine, a word and a byte are
the same thing.

If all of the task periods are known in
advance, a set of algorithms called Rate
Monotonic Analysis can be used to pre-
dict timing and throughput requirements.
Unfortunately, it is not always possible to
know the task periods in advance.

Useful hardware tools are a digitized
oscilloscope with memory, a logic analyz-
er, and a counter-timer. These tools can
be used to study timing execution of a
routine by altering it to set a bit on a port
that can be monitored, and then com-
pensating for the time used by the added
code. In-circuit emulators can produce
timing information, if one is available for
the processor.

Conclusion
Real-time programming involves keeping
track of time, coordinating tasks, and
within limits, making events predictable.
This requires an understanding of hard-
ware timing, operating system concepts,
and programming skills. Programming
skills involve assembly programming as
well as a high-level language. As this arti-
cle has shown, there is more involved in
real-time programming than in applica-
tion programming for a desktop comput-
er running a popular operating system.◆

References
1. Jensen, Douglas E. “Eliminating the

Hard/Soft Real-Time Dichotomy.”
Embedded Systems Programming
Oct. 1994: 28.

2. Savitzky, Steven R. Real-Time
Microprocessor Systems. New York:
Van Nostrand Reinhold, 1985.

3. Obenland, Kevin M. “POSIX in Real
Time.” Embedded Systems Program-
ming Apr. 2001: 137 <www.
embedded.com/2001/0104>.

4. Wood, Mike, and Tom Barrett. “A
Real-Time Primer.” Embedded
Systems Programming Feb. 1990.

5. Savitzky 75.
6. The EE Compendium <http://ee

cleversoul.com>.
7. Driscoll, Frederick F., et. al. Data

Acquisition and Process Control With
the M68HC11 Microcontroller. Mac-

An Introduction to Real-Time Programming

“If several tasks are
allowed to have the

same priority, they are
executed in the order

they become ready; this
is called round-robin

scheduling.”

Development of Real-Time Software

Millan Publishers Ltd., 1994: 25.
8. Herzog, James H. Design and Org-

anization of Computer Structures.
Franklin Beedle & Assoc., 1996: 576
<www.ee.furg.br/~silviacb/Arq1.
html>.

9. Sato, Jin. Jin Sato’s Lego Mindstorms:
The Master’s Technique. Trans. Arnie
Rusoff. San Francisco: No Starch
Press, 2002: 55.

10. Turley, Jim. “Ten Lies About
Microprocessors.” Embedded Systems
Programming Jul. 2003.

11. Hennessy, John L., David A. Patterson,
and David Goldberg. Computer Ar-
chitecture: A Quantitative Approach.
2nd ed. Burlington, MA: Morgan
Kaufmann, 1996: 57.

12. Savitzky 18.
13. Labrosse, Jean J. “Understanding

Semaphores.” Embedded Systems
Programming Oct. 1992.

14. Moritsugu, Steve, et al. Practical
UNIX: Contents at a Glance. Que
Corporation, 2000: 910.

15. Savitzky 121.
16. Savitzky 9.
17. Spasov, Peter. Microcontroller Tech-

nology: The 68HC11. 2nd ed.
Englewood Cliffs, NJ: Prentice Hall
College Div., 1996: 154.

18. Thompson, Linda M. “Designing
With Multiple Processors.” Embedded
Systems Programming May 1991.

19. Wood, Mike, and Tom Barrett. “A
Real-Time Primer.” Embedded
Systems Programming Feb. 1990: 23.

20. Savitzky 5.
21. Silberschatz, Galvin. Operating

System Concepts. Addison Wesley
Longman, 1998.

22. Department of Defense Ada Joint
Program Office. Ada 95 Quality and
Style: Guidelines for Professional
Programmers. Herndon, VA: Software
Productivity Consortium, Oct. 1995.

23. Hennessy, et. al 74.
24. Herzog 579.

Note
1. Edsger Wybe Dijkstra (1930-2002) is

best known for his battle to eliminate
the GOTO statement from program-
ming. He also developed an efficient
shortest path algorithm and he
designed and coded the first Algol 60
compiler. Many of his papers can be
found at <www.cs.utestas.edu/
users/EWD>.

Additional Reading
1. Clements, Alan. Microprocessor

Systems Design. PWS Publishers,
1987.

2. Comer, Douglas. Operating System
Design. Englewood Cliffs, NJ:
Prentice Hall, 1984.

3. Jones, Steve. “Managing Real-Time
Complexity.” Embedded Systems
Programming Apr. 1992.

4. Sasaki, Stan. “Evaluating Timing
Performance.” Embedded Systems
Programming Oct. 1992.

5. Spasov, Peter. Microcontroller
Technology: The 68HC11. 2nd ed.
Englewood Cliffs, NJ: Prentice Hall
College Div., 1996.

6. VanZandt, Lonnie. “Scheduling
Sporadic Events.” Embedded Sys-
tems Programming Dec. 2002 <www.
embedded.com/2002/0212>.

7. White Papers. “Why BlueCat Linux
and Real-Time LynxOS?” <www.lynux
works.com/products/whitepapers.
php3>.

8. E. Douglas Jensen’s Real-Time for the
Real World <www.real-time.org>.
(This site has a fun clock to play with
as well as much information about
real-time computing.)

9. Software Engineering for Real-Time
Systems Laboratory <www.enee.umd.
edu/serts/bib/index.shtml>.

10. University of North Carolina.
“Research in Real-Time Systems at
UNC” <www.cs.unc.edu/Research/
dirt/real-time.html>.

11. Jim Turley’s Silicon Insider <www.
jimturley.com>.

12. In-StatMDR. “Microprocessor Re-
port.” <www.MDRonline.com>.

8 CROSSTALK The Journal of Defense Software Engineering November 2003

About the Author

Dennis Ludwig is a
computer engineer at
the Simulation and
Analysis Facility, Aero-
nautical Systems Center
at Wright-Patterson Air

Force Base in Ohio. He has worked
with software for more than 20 years.
He has a Bachelor of Science in electri-
cal engineering from Louisiana Tech
University, a Master of Science
Administration from Georgia College,
and a Master of Engineering from
Mercer University.

ASC/HPEI
2180 8th St.
B145, R 225
WPAFB, OH 45433-7204
Phone: (937) 255-7887
DSN: (785) 255-7887
E-mail: dennis.ludwig@wpafb.af.mil

November 12-14
2003 Federal Chief Technology

Officer Summit
Washington, DC

www.vanheyst.com/CTOSummit/
home.htm

December 7-11
Association for Computing Machinery

SIGAda Annual International Conference
San Diego, CA

www.acm.org/sigada/conf /
sigada2003

December 8-10
Inside ID

Identification Solutions Conference
Washington, DC

www.insideid.com/conference.asp

December 9-10
Institute for Defense and Government

Advancement SoldierTech2003
Washington, DC
www.idga.org

December 11
Real-Time and Embedded

Computing Conference
Seattle, WA

www.rtecc.com/seattle

January 20-22, 2004
Institute for Defense and Government

Advancement Network Centric Warfare
Arlington, VA
www.idga.org

January 26-28
Third Annual Conference on the

Acquisition of Software-Intensive Systems
Arlington, VA

www.sei.cmu.edu/products/events/
acquisition

March 30-31
3rd Annual Southeastern Software

Engineering Conference
Huntsville, AL

www.ndia-tvc.org/SESEC

April 19-22
2004 Software Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

